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Abstract: In the near future, there will be several new instruments measuring atmospheric
composition from geostationary orbit over North America, East Asia, and Europe. This constellation
of satellites will provide high resolution, time resolved measurements of trace gases and aerosols
for monitoring air quality and tracking pollution sources. This paper describes a detailed, fast, and
accurate (less than 1.0% uncertainty) method for calculating synthetic top of the atmosphere (TOA)
radiances from a global simulation with a mesoscale free running model, the GEOS-5 Nature Run,
for remote sensing instruments in geostationary orbit that measure in the ultraviolet-visible spectral
range (UV-Vis). Generating these synthetic observations is the first step of an Observing System
Simulation Experiment (OSSE), a framework for evaluating the impact of a new observation or
algorithm. This paper provides details of the model sampling, aerosol and cloud optical properties,
surface reflectance modeling, Rayleigh scattering calculations, and a discussion of the uncertainties
of the simulated TOA radiance. An application for the simulated TOA radiance observations
is demonstrated in the manuscript. Simulated TEMPO (Tropospheric Emissions: Monitoring of
Pollution) and GOES-R (Geostationary Operational Environmental Satellites) observations were used
to show how observations from the two instruments could be combined to facilitate aerosol type
discrimination. The results demonstrate the viability of a detailed instrument simulator for radiance
measurements in the UV-Vis that is capable of accurately simulating high resolution, time-resolved
measurements with reasonable computational efficiency.

Keywords: observing system simulation experiment; instrument simulator; radiative transfer

1. Introduction

Within the next five years, several new instruments will be launched into geostationary orbit with
the objective of monitoring air quality. This geostationary constellation will be comprised of TEMPO
(Tropospheric Emissions: Monitoring of Pollution) over North America [1], Sentinal-4 over Europe [2],
and GEMS (Geostationary Environment Monitoring Spectrometer) over East Asia [3], and will provide
an unprecedented level of high-resolution (both spatially and temporally) atmospheric composition
data. The three spaceborne platforms will measure ozone (O3), nitrogen dioxide (NO2), sulfur dioxide
(SO2), formaldehyde (HCHO), and aerosols from backscattered radiation in the ultraviolet-visible
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spectral range (UV-Vis). The large-scale, time-resolved measurements of these pollutants provided
by the geostationary constellation are important for managing air quality, and understanding how
human activity impacts local, regional, and global distributions of pollution, as well as global climate.

Aerosols are one of the most important forcing agents in the climate system. They can
be transported around the globe [4], and interact with weather systems [5], scatter and absorb
radiation [6–8], and modify cloud properties [9,10]. Routine measurements of various aerosol
parameters, such as aerosol optical depth (AOD), absorbing aerosol optical depth (AAOD), aerosol
index (AI), and single scattering albedo (SSA), are currently available from several sensors in low earth
orbit (LEO). These sensors include the twin MODIS (Moderate Resolution Imaging Spectroradiometer)
instruments (on-board Terra and Aqua), MISR (Multi-angle Imaging SpectroRadiometer), OMI (Ozone
Monitoring Instrument), and POLDER (Polarization and Directionality of the Earth Reflectances)
(see Table 1 in [11]). In addition, CALIOP, a spaceborne LiDAR, measures the vertical distribution of
aerosol backscattering.

Instruments in LEO provide one or two measurements per day, but as aerosol parameters cannot
be retrieved under cloudy conditions there can be a large time interval between valid observations.
This limits the capability of LEO measurements to track the evolution of aerosol distributions, while a
geostationary constellation can provide a continuous view of the areas below the satellites. TEMPO,
GEMS, and SENTINEL-4 will provide measurements at a temporal resolution of approximately one
hour, enhancing the probability of observing cloud-free scenes.

It is expected that the baseline aerosol products for the geostationary constellation, AOD and
AI, will be based on the heritage of the OMI and TOMS (Total Ozone Mapping Spectrometer) AOD
retrieval algorithms that use reflectance measurements in the UV. However, numerical studies have
shown that including coincident measurements from geostationary weather satellites, such as the
Geostationary Operational Environmental Satellite-R Series (GOES-R) operated by the U.S. National
Oceanic and Atmospheric Administration (NOAA), at complementary wavelengths and viewing
geometry can reduce the uncertainty in retrieved AOD as well as enhance the retrieval of fine-mode
aerosol fraction [11]. Moreover, higher resolution observations from weather satellites can also improve
the geostationary AOD retrieval by providing sub-pixel cloud information.

Estimating the usefulness and key characteristics of these planned aerosol products is essential
for developing applications for these data. This type of evaluation is referred to as an Observing
System Simulation Experiment (OSSE). OSSEs are performed using datasets of synthetic observations
developed from a high resolution earth system simulation. The synthetic observations should sample
the earth system simulation in such a way as to mimic the observation capabilities of the instrument,
including its’ viewing geometry and spatial, temporal, and spectral resolution. After an algorithm
is applied to the synthetic data, one can gauge the performance of the algorithm by comparing the
algorithm results to the initial earth system simulation from which the synthetic data was created (i.e.,
the OSSE “truth”).

In order to generate synthetic observations globally over a realistic dynamic range, a 2-year
high-resolution mesoscale free-running atmospheric simulation, the Goddard Earth Observing System
version 5 (GEOS-5) Nature Run (G5NR) [12], was completed. The G5NR has been validated against
nature [13], and provides a realistic representation of global aerosol concentrations and climate. As the
GEOS-5 Nature Run includes aerosols, we are able to extend OSSEs beyond traditional weather
forecasting applications.

Several studies have explored the ability of geostationary observations to better constrain spatial
and temporal variations of CO and O3 [14–17], and have shown that geostationary satellites have the
potential to address the limitations of the current observing system. In comparison, only Timmermans
et al. [18] has presented an OSSE for aerosols. They found that hourly geostationary AOD observations
over Europe improved the ground level particulate matter analysis and forecast.

The goal of this paper is to describe the aerosol nature run, G5NR, and its’ application to forward
model calculations for generating synthetic observations for aerosol OSSEs. These synthetic data will
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be used to test AOD retrieval algorithms over realistic conditions, and to understand the impact of the
geostationary constellation on global aerosol data assimilation and forecast products. Aerosol OSSEs
require detailed radiative transfer modeling of top of the atmosphere (TOA) reflectance to generate
synthetic observations rather than averaging kernel regression methods, such as those used for CO
and O3 OSSEs, because aerosol distributions have higher spatial variability, and operational AOD
retrievals rely on multi-step retrieval approaches (that can vary depending on the type of aerosol
detected) rather than formal optimal estimation to retrieve AOD. In Section 2, we describe the TEMPO,
GEMS, and SENTINEL-4 instruments, as well as the G5NR aerosol simulation. This is followed by a
description of the methodology used to generate synthetic TOA reflectance with VLIDORT (Vector
Linearized Discrete Ordinate Radiative Transfer), the forward radiative transfer model. In Section 3,
we present examples of simulated observations for TEMPO, GEMS, and SENTINEL-4 and describe an
estimate of their uncertainty in Appendix A. Finally, Section 4 contains a summary of the work and
future perspectives.

2. Methodology and Data

2.1. Characteristics of TEMPO, GEMS, and SENTINEL-4

Figure 1 shows the expected spatial resolution for TEMPO, GEMS, and SENTINEL-4 imagery,
which was determined according to a geostationary projection on the globe from their respective
longitudes, listed in Table 1. The table also contains the instruments’ fields of regard and spectral
ranges. Each instrument observes its’ field of regard by scanning from east to west over the course
of an hour for TEMPO and SENTINEL-4, and 30 min for GEMS, which will take observations for
30 min every hour. All of the instruments will nominally cover the 300–500 nm spectral range, but
SENTINEL-4 will also measure 750–775 nm to gain additional information about cloud heights from
the oxygen-A band.

Figure 1. Spatial resolution of TEMPO, SENTINEL-4, and GEMS. Pixel sizes were determined according
to a geostationary projection on the globe from the satellites’ respective longitudes.



Atmosphere 2019, 10, 2 4 of 36

Table 1. Instrument specifications for the geostationary constellation.

TEMPO GEMS SENTINEL-4

Satellite Longitude −100◦ 128.2◦ 0◦

Number of Pixels East -West 1250 700 570
Number of Pixels North-South 2000 2000 530
East-West Field of Regard

Top −166◦ to −33◦ 55◦ to 145◦ −21◦ to 61◦

Bottom −123◦ to −65◦ 87◦ to 139◦ −9◦ to 39◦

North-South Field of Regard
Left 18◦ to 63◦ −5◦ to 42◦ 30◦ to 66◦

Right 18◦ to 52◦ −5◦ to −45◦ 31◦ to 53◦

Spectral Range 290–690 nm 300–500 nm 305–500 nm & 750–775 nm
Spectral Resolution 0.6 nm 0.6 nm 0.5 nm & 0.12 nm

2.2. GEOS-5 Nature Run Aerosol Simulation

The GEOS-5 Nature Run (G5NR) is a 2-year (May 2005–May 2007) global 7 km non-hydrostatic
mesoscale simulation based on the Ganymed version of GEOS-5, the NASA GMAO Earth system
model. The Goddard Chemistry, Aerosol, Radiation, and Transport model (GOCART, [19]) was run
online with coupling to the GEOS-5 radiation code [20], and handled the sources, sinks, and chemistry
of dust, sulfate, sea salt, black carbon (BC), and organic carbon (OC) aerosols. The model tracked the
total mass of sulfate, two modes (hydrophobic and hydrophilic) of organic and black carbon aerosol,
and the particle size distributions of dust and sea salt resolved across five non-interacting size bins
for each. The G5NR simulation was driven by the following prescribed parameters: (1) sea surface
temperature and sea-ice, (2) daily sources of volcanic and biomass burning aerosols and trace gases,
(3) high-resolution anthropogenic aerosol and trace gas emissions, (4) sinks of aerosols and trace gases,
and (5) biogenic sources and sinks of CO2.

Besides a full meteorological description of the atmosphere, the G5NR outputs contain vertical
profiles (72 layers from the surface to 0.01 hPa) of concentrations of the 15 aerosol tracers, as well as
O3, CO, and CO2 at 30 min time intervals. As the aerosol mass mixing ratios were initialized at zero at
the start of the G5NR time period, the first 6 months of the simulation were taken as spin-up in order
for aerosol mass mixing ratios to reach equilibrium in the stratosphere. Figure 2 shows an example of
the simulated instantaneous concentrations of sea salt, black and organic carbon, dust, and sulfate,
and illustrates the high spatial resolution of the G5NR.

Figure 2. The 7 km G5NR aerosol simulation for 27 July 2006 at 12 Z. Blue shading corresponds to sea
salt concentration, green shading corresponds to black and organic carbon concentrations, red-orange
shading corresponds to dust, and white shading corresponds to sulfate.
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2.2.1. Aerosol Sources and Sinks

The following sources of aerosols were included in the model: (1) wind-speed dependent
emissions of dust and sea-salt (for details see [21]), (2) anthropogenic emissions of sulfate and
carbonaceous aerosol from fossil fuel combustion, biomass burning, and biofuel consumption
(described below), and (3) biogenic emissions of organic carbon (for details see [21]). Oxidation
of di-methyl sulfide (DMS) and SO2, which had anthropogenic and volcanic sources, was an additional
chemical production source for sulfate (SO4). The aerosol sinks were dry deposition, wet removal, and
convective scavenging. Aerosol hygroscopic growth was considered in computations of particle fall
velocity and deposition velocity.

Sulfate emissions from fossil fuel combustion were taken from the Emissions Database for Global
Atmospheric Research v4.2 (EDGAR; [22]), which are provided annually at 0.1◦ resolution. For organic
and black carbon fossil fuel and biofuel aerosol emissions, which are not included in EDGAR v4.2,
a hybrid database was developed using 0.1◦ resolution EDGAR-HTAP emissions [23] and 1◦ resolution
emissions from the Aerosol Comparisons between Observations and Models (AeroCom)[24] Phase II
project. EDGAR-HTAP emission totals for 2005 over 1◦ areas were adjusted to match yearly AeroCom
1◦ emissions estimates for 2005–2007. The relative spatial distribution of 0.1◦ resolution EDGAR-HTAP
emissions within in each 1◦ area was retained. Thus, the resulting emissions database draws global
total emissions and inter-annual variability from AeroCom, while using EDGAR-HTAP to achieve a
high spatial resolution.

SO2 and SO4 emissions from ships were derived in the same manner from EDGAR-HTAP and
AeroCom emissions. Non-shipping emissions of SO2 were taken directly from EDGAR v4.1 estimates
for 2005 because of errors in AeroCom emissions. DMS emissions from marine algae were based on
the monthly varying climatology described in [25].

Biomass burning emissions of OC, BC, and SO2 were obtained from the Quick Fire Emissions
Dataset (QFED) version 2.4-r6 [26]. QFED is based on the fire radiative power (top-down) approach
and includes the cloud correction method used in the Global Fire Assimilation System (GFAS) [27].
However, it also employs a more sophisticated treatment of emissions from non-observed land
areas. Fire locations and fire radiative power were obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS) Level 2 fire products and the MODIS geolocation products. Daily mean
fire emissions were created from the MODIS Level 2 fire products re-gridded to 0.1◦ × 0.1◦ horizontal
resolution. In the model, a diurnal cycle in fire emissions that is more prominent in the tropics and
gradually weakens at higher latitudes in the North hemisphere’s temperate zone was imposed on the
daily mean emission values.

The major chemical production and loss pathways of SO2, SO4, and CO were accounted for
by the GOCART tropospheric chemical mechanism, which includes gas-phase and aqueous-phase
reactions. The chemical mechanism was driven by prescribed monthly mean concentrations of several
key trace gases and radicals, namely methane (CH4), hydroxyl radical (OH), nitrate radical (NO3)
and hydrogen peroxide (H2O2). The prescribed fields were generated from a simulation of the NASA
Global Modeling Initiative (GMI) model driven by assimilated meteorological data from MERRA
(Modern-Era Retrospective Analysis for Research and Applications) [28–30]. A diurnal variation of OH
concentration was computed by scaling the monthly mean fields by the cosine of the solar zenith angle.
A diurnal variation of NO3 was imposed by assuming zero concentration in daylight and the monthly
mean concentration at night. Because H2O2 is the limiting agent in the aqueous phase formation of
SO4, its’ concentration was reset every three hours to the monthly mean values.

2.2.2. Evaluation of G5NR Aerosols

Aerosol concentrations in the G5NR simulation were evaluated with the following datasets [13]:
(1) global concentrations from the NASA/GMAO MERRA Aerosol Reanalysis (MERRAero) [31], (2)
statistics from the AeroCom Phase I models [32], and (3) CALIOP aerosol attenuated backscatter
vertical profiles [33]. The evaluation was meant to assess the overall realism of the simulated aerosols,
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and mainly focused on broad performance metrics of the simulation such as aerosol residence times,
and the spatial and temporal distributions of aerosol composition and AOD. As the G5NR is a free
running simulation, differences are to be expected between the distributions of observed and simulated
atmospheric composition due to meteorological variability.

G5NR aerosol residence times, and wet and dry removal rates are listed in Table 2. The residence
time is defined as the global aerosol total column mass divided by the removal rate (See Section 6
in [32]). Also included in the table are the AeroCom multi-model mean parameters and their standard
deviations reported in Textor et al. [32]. The residence times of sea salt, dust, and black carbon
agree well with the AeroCom multi-model means. The residence time of organic carbon in G5NR is
roughly one day less than the AeroCom mean, but lies well within one standard deviation of the mean.
However, the residence time of sulfate aerosol is significantly (36%) lower than what is reported by
the AeroCom models. The shorter sulfate residence time in G5NR is due to the relatively high wet
removal rate of the simulation of 0.34 days−1.

Table 2. Residence and removal rates of aerosols in G5NR. The residence times in parenthesis are
multi-model means and standard deviations from the AeroCom project reported in [32].

Residence Time Dry Removal Rate Wet Removal Rate
[days] [day−1] [day−1]

Organic Carbon 5.33 (6.54 ± 27%) 3.55 × 10−2 1.52 × 10−1

Black Carbon 7.31 (7.12 ± 33%) 3.08 × 10−2 1.06 × 10−1

Sulfate 2.67 (4.12 ± 18%) 3.18 × 10−2 3.43 × 10−1

Sea Salt 0.42 (0.48 ± 58%) 1.13 1.24
Dust 4.22 (4.14 ± 43%) 1.55 × 10−1 8.16 × 10−2

The 2006 seasonal mean 550 nm AOD (AOD550) is shown in Figure 3 from the MERRAero
Reanalysis and G5NR. The MERRAero aerosol reanalysis includes assimilation of AOD observations
from the MODIS sensor on both Terra and Aqua, and provides a climatology of the aerosol
spatio-temporal distribution. Overall, the seasonal and spatial patterns in G5NR are very similar to
MERRAero. Patterns of aerosol enhancements agree well with the major sources and transport routes
of aerosols. However, over Africa and along the westward transport route of Saharan dust, G5NR
AOD550 is systematically higher than MERRAero. Likewise, G5NR AOD550 is higher than MERRAero
in the regions affected by dust that originate from sources in the Middle East.

Figure 4 shows the monthly time series of global mean AOD550 for MERRAero and G5NR.
The G5NR temporal variability and the magnitude of the global mean AOD550 are similar to the
aerosol climatology, which is expected given the similarities in the primary emissions. However,
there are significant differences between G5NR and MERRAero in speciated global mean AOD550.
Underestimated carbon and sulfate were compensated by overestimated dust. This indicates that the
wind driven dust emissions and resolution dependent biomass burning emissions should be re-tuned
for the mesoscale resolution of G5NR.
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Figure 3: Seasonal-mean AOT from the MERRAERO aerosol reanalysis (left column panels)
and the Nature Run simulation (right column panels). Time-averaged values for DJF, MAM,
JJA and SON in 2006 are organized in rows from top to bottom.

10

Figure 3. 2006 seasonal mean 550 nm AOD from the MERRAero aerosol reanalysis (left column) and
the G5NR (right column). Time-averaged values for DJF, MAM, JJA, and SON are organized from top
to bottom.
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Figure 4. Time series of global monthly mean 550 nm AOD. Results from the G5NR simulation are in
black. The monthly mean climatology from the MERRAero reanalysis is shown in gray; the shaded
area encloses the minimum and maximum monthly means from the 14-year time series (2002–2016),
while the gray line represents the mean.

The observed similarities between G5NR and MERRAero in the temporal patterns of the speciated
550 nm AODs enables us to derive global scaling factors for each of the aerosol species. The global
scaling factors were computed from linear regression of the G5NR and MERRAero AOD550 while
constraining the intercept to zero, and are listed in Table 3. On a global scale, BC, OC, sulfate,
and sea salt AOD550 should be increased by the factors 1.43, 1.36, 1.30, and 1.08, respectively, to
match MERRAaero. Meanwhile, dust AOD550 should be decreased by a factor of 0.67. For certain
applications of the G5NR data, such as sampling studies to quantify the likelihood that an orbit will
encounter certain aerosol mixtures, it is recommended that users apply these scaling factors to adjust
the speciated AOD550.
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Table 3. Global 550 nm AOD Scaling Factors.

Aerosol Species Scaling Factor

Organic Carbon 1.43
Black Carbon 1.36

Sulfate 1.30
Sea Salt 1.08

Dust 0.67

G5NR simulated aerosol vertical distributions were compared to cloud-cleared CALIOP Level 1.5
aerosol attenuated backscatter vertical profile data [34] in Figures 5 and 6. This is a spatially averaged
cloud cleared product suitable for comparison to aerosol transport models. We focused our analysis
on two different regions during the month of July, when large plumes of dust and biomass burning
aerosol are found off the west coast of Africa. The dust dominated region included the Sahara and the
North Atlantic Ocean (60◦ W – 20◦ E, 0◦ N – 30◦ N), and the biomass burning region covered southern
Africa (10◦ W – 30◦ E, 0◦ S – 30◦ S).

Figure 5 shows the monthly mean comparison over the Saharan dust region between CALIOP
and G5NR aerosol attenuated backscatter at 532 nm. The monthly mean for the model was calculated
with data for July 2006, while for CALIOP observations from July 2011 were used. Only one
observation year was considered due to the limited availability of Level 1.5 data at the time of
this analysis. This comparison should be viewed as a qualitative assessment of the G5NR aerosol
vertical distributions because the Nature Run has not been sampled along the CALIPSO orbit track.
Furthermore, as G5NR is a free running simulation, it does not represent a prediction for a specific
observation year. Nevertheless, the observed and simulated aerosol backscatter vertical profiles have
similar vertical structures, with a dust plume that extends to roughly 6 km over the Sahara and
descends westward to the Caribbean over a shallow marine aerosol layer. However, the magnitude
of the attenuated backscatter of the elevated dust plume in G5NR is higher than what is observed by
CALIOP. This further indicates that dust emissions in G5NR over this region are likely overestimated.
However, these differences could also be due to interannual variability in the spatial distribution of
elevated dust in the North Atlantic.

Figure 7: Vertical profiles of attenuated backscatter coe�cient only due to aerosols at 532 nm over the
African dust region (60°W – 20°E, 0°N – 30°N). On the left are time-averaged retrievals from CALIOP for
July 2011. On the right are results from the Nature Run simulation but for July 2006.

Figure 8: Same as Figure 7 but for the southern Africa biomass burning region (10°W – 30°E, 0°S – 30°S).

17

Figure 5. Vertical profiles of aerosol attenuated backscatter coefficient at 532 nm over the African dust
region (60◦ W – 20◦ E, 0◦ N – 30◦ N). On the left are time-averaged retrievals from CALIOP for July
2011. On the right is the G5NR simulation July 2006.

Figure 6 shows the comparison between CALIOP and G5NR over the southern Africa biomass
burning region. The simulation and observations again have a similar vertical structure. In this case,
the smoke plume extends up to 4 km above a marine aerosol layer that can reach an altitude of∼1.5 km
for both G5NR and CALIOP. While the magnitude of the simulated aerosol backscatter for the smoke
plume is in the range of the CALIOP estimates, the simulated backscatter for the marine aerosol layer
tends to be weaker than what is observed.
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Figure 7: Vertical profiles of attenuated backscatter coe�cient only due to aerosols at 532 nm over the
African dust region (60°W – 20°E, 0°N – 30°N). On the left are time-averaged retrievals from CALIOP for
July 2011. On the right are results from the Nature Run simulation but for July 2006.

Figure 8: Same as Figure 7 but for the southern Africa biomass burning region (10°W – 30°E, 0°S – 30°S).

17

Figure 6. Same as Figure 5 but for the southern Africa biomass burning region (10◦ W – 30◦ E, 0◦ S –
30◦ S).

2.3. Surface Reflectance Models

For each satellite domain and observation wavelength, the highest resolution available surface
reflectance dataset was used. For simplicity, this first version of the simulator we considered only land
surfaces, while future versions will consider water leaving radiance. Over land, for visible and near
infrared channels, we used the Ross-Thick Li-Sparse (RTLS) model [35] to represent the variations
in surface reflectance as a function of measurement and illumination angles (i.e., the bidirectional
reflectance distribution (BRD)). In this model the BRD is calculated by a linear combination of three
semi-empirical kernel functions:

ρ(θs, θv, φ) = Kisoρiso + Kgeoρgeo(θs, θv, φ) + Kvolρvol(θs, θv, φ) (1)

where ρiso, ρgeo, ρvol are the isotropic (Lambertian), geometric [36], and volumetric [37] kernel functions,
and Kiso, Kgeo, and Kvol are their respective amplitudes (or weights). The kernels represent different
modes of surface scattering. The kernel weights are derived from MODIS observations, such that when
the three kernels are scaled by their weights the modeled surface reflectance matches the observations.

Equations (2)–(4) show the formulations for the three kernels based on the solar zenith (θs),
viewing zenith (θv), and relative azimuth (φ = φv − φs) angles, which are defined according to the
photon travel direction, such that φ = 0 is the forward scattering direction (φv and φs are the viewing
and solar azimuth angles, respectively). In Equation (3), for the Li-Sparse (geometric) kernel, h, b, and
r represent the height of the crown center, the vertical crown radius, and horizontal crown radius,
respectively. The crown relative height ( h

b ) was set to 2, and the crown shape parameter ( b
r ) was set to 1

(consistent with the MODIS retrievals).
The MCD43D product provides daily kernel weights [35] on a 30 arc second grid. The dataset

was gap-filled with a seasonal climatology. Eight-day RTLS kernel weights at 1 km resolution from the
MAIAC (Multi-Angle Implementation of Atmospheric Correction) algorithm [38,39] (only available
over North America at the time of this work) were used for the TEMPO domain.

When using the RTLS model to represent surface reflectance, VLIDORT treats surface reflectance
as “scalar”, i.e., reflectance is only applied to the total intensity (I) term of the Stokes vector; only the
(1,1) component of the BRD matrix is non-zero.

ρiso = 1 (2)
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θ′s = tan−1
(

b
r

tanθs

)
θ′v = tan−1

(
b
r

tanθv

)
cosξ ′ = cosθ′scosθ′v − sinθ′ssinθ′vcosφ

D′ =
√
(tanθ′v)2 + (tanθ′s)2 + 2tanθ′vtanθ′scosφ

cos(t) = min
{

1,
h
b

√
D′2 + (tanθ′stanθ′vsinφ)2

secθ′v + secθ′s

O =

(
1− 1

π
(t− sin(t)cos(t))

)
(secθ′v + secθ′s)

ρgeo(θ
′
s, θ′v, φ) =

1
2
(1 + cosξ)secθ′vsecθ′s −O

(3)

cosξ = cosθscosθv − sinθssinθvcosφ

ρvol(θ
′
s, θ′v, φ) =

(
π
2 − ξ

)
cosξ + sinξ

cosθv + cosθs
− π

4

(4)

Figure 7 shows an example of the change in surface reflectance at 670 nm as would be observed
by TEMPO due to the changing sun-sensor geometry on a typical day, and indicates the importance of
using a rigorous radiative transfer model with a non-Lambertian surface.

Figure 7. Simulated surface reflectance according to the MAIAC BRDF retrieval at 670 nm for the
TEMPO sun-sensor geometry at 17–22 Z on 31 December 2005. Changes in the surface reflectance
throughout the day are due to the bidirectional nature of the surface reflectivity.

For the 354 and 388 nm channels, which fall outside of the range of the MODIS observations, we
used a global 0.25◦ monthly climatology of Lambertian surface reflectance that was based on TOMS
observations (Hiren Jethva, personal communication) interpolated to the satellite grids. Figure 8
shows the December Lambertian surface reflectance from the climatology dataset on the three
instrument domains.
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December 354 nm Lambertian Surface Reflectance

0.001 0.010 0.100 1.000

Figure 8. Lambertian equivalent reflectance mapped to the TEMPO grid from a 0.25◦ monthly
climatology based on TOMS observations.

2.4. TOA Radiance Simulations

Our approach to simulating TOA radiance for TEMPO, GEMS, and SENTINEL-4 is to first
simulate radiance at scales smaller than the satellite resolution, and then aggregate the sub-pixels
to the satellite resolution using the independent pixel approximation. This approach allows us to
simulate realistic sub-grid scale variability of surface and cloud reflectance. The higher resolution
radiance dataset also allows us to test different approaches to combining simultaneous measurements
from the relatively coarse resolution air quality satellites with higher resolution weather satellites,
such as GOES-R. The nominal sub-pixel resolution in our simulations is 1 km, corresponding to, for
example, 8 sub-pixels for every one 2 km by 4 km TEMPO pixel.

To achieve this high resolution radiance simulation we use high resolution surface reflectance
datasets (when available), and statistically downscale the G5NR simulated moisture fields following
the approach in Norris et al. [40], which derives cloud liquid water path, cloud ice water path, and
relative humidity for each sub-pixel. Aerosol dry mass mixing ratios in the sub-pixels are derived
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from interpolating the G5NR model outputs to the coarse TEMPO, GEMS, and SENTINEL-4 grids,
which have comparable resolutions. Thus, because we lack a reliable method to downscale the aerosol
concentration further, the aerosol dry mass mixing ratios within the coarse satellite pixel is constant.
However, the downscaled 1 km relative humidity data is used to determine the aerosol hygroscopic
growth, allowing for sub-grid scale variability in aerosol optical properties.

2.4.1. Generating Sub-Grid Cloud Pixels

The 1 km cloud sub-pixels were generated from the G5NR simulation using a statistical model
of sub-grid column moisture variability. The approach, described in Norris et al. [40], is to use a
parameterized probability density function (PDF) of total water content for each model layer, and a
Gaussian copula to vertically correlate the layer PDFs. The parameterized PDF used for the sub-grid
moisture variability was a skewed triangle PDF, which is characterized by three parameters: a lower
bound, an upper bound, and a mode. For the Gaussian copula, we used a correlation matrix with a
fixed vertical decorrelation scale of 100 hPa, and a multiplicative flow-dependent correlation in total
water. The details of the calculation of the PDF parameters are described in Norris and da Silva [41].
Once the correlation matrix and PDF are specified, the Gaussian copula correlated ranks of each
grid-column layer are generated and then inverted with each layer’s skewed triangle PDF. The result
is profiles of total moisture content for the sub-grid pixels that sample the layer PDFs and have the
specified vertical correlations. The transformation of layer total sub-grid moisture content to vapor,
liquid water, and ice assumes the vapor is capped at the GEOS-5 saturation vapor content and that
the excess moisture is condensate, split between the phases using an ice fraction linear in temperature
over the −35◦ to 0 ◦C range.

The sub-grid condensate moisture columns are subsequently clumped to give horizontal spatial
coherence by applying a horizontal Guassian copula to the condensed water path to each layer [42].
The clumping algorithm generates sub-grid clouds with a reasonable horizontal structure, rather than
being randomly distributed. This is important for testing cloud masking strategies that rely on spatial
variance tests for identifying partially cloudy pixels.

Vertical profiles of effective radii for the sub-grid liquid water and ice are taken from the GEOS-5
simulation, which are based on the grid-column temperature and pressure profiles. Finally, sub-grid
liquid water and ice content is combined with the GEOS-5 diagnostic effective radii to generate vertical
profiles of sub-grid liquid water and ice optical thickness, which are used as inputs to the radiative
transfer model.

2.4.2. Forward Radiative Transfer Calculations with VLIDORT

VLIDORT is a linearized pseudo-spherical vector discrete ordinate radiative transfer model (RTM)
for direct and diffuse radiation in a multi-layer atmosphere [43]. The model outputs the Stokes vector
and its’ derivatives with respect to any atmospheric or surface property for arbitrary viewing geometry
and optical depth. The optical property inputs for VLIDORT are the layer extinction optical depths
(∆l), layer total single scattering albedos (ωl), and layer scattering-matrix expansion coefficients (Bl),
and surface reflectance (ρ). For layer Rayleigh scattering optical thickness, δRay,l , molecular absorption
optical thickness, αgas,l , aerosol extinction optical thickness, τaer,l , aerosol single scattering albedo,
ωaer,l , liquid water and ice cloud extinction optical thicknesses, τLcld,l and τIcld,l , and liquid water and
ice cloud single scattering albedos, ωLcld,l and ωIcld,l , the total layer atmospheric optical inputs are:

∆l = δRay,l + αgas,l + τaer,l + τLcld,l + τIcld,l (5)

ωl =
ωaer,lτaer,l + ωLcld,lτLcld,l + ωIcld,lτIcld,l + δRay,l

∆l
(6)
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Bl =
ωaer,lτaer,l Baer,l + ωLcld,lτLcld,l BLcld,l + ωIcld,lτIcld,l BIcld,l + δRay,l BRay,l

ωaer,lτaer,l + ωLcld,lτLcld,l + ωIcld,lτIcld,l + δRay,l
(7)

Aerosol optical properties, tauaer,l , ωaer,l , and Baer,l were derived from G5NR vertical profiles of
aerosol dry mass mixing ratios interpolated to the TEMPO, GEMS, and SENTINEL-4 grids. However,
the downscaled sub-grid 1 km relative humidity profiles described in the previous section were used
to determine the aerosol hygroscopic growth, allowing for sub-grid scale variability in aerosol optical
properties. Details of the aerosol optical property calculations, as well as surface reflectance datasets
are described in Sections 2.3 and 2.6, while the details of the Rayleigh optical thickness calculations
are described in Section 2.5. The liquid water and ice cloud optical properties were derived from
Mie calculations based on gamma water droplet size distributions with an effective variance of 0.1,
and bulk ice cloud phase models developed by Baum et al. [44], both consistent with the MODIS
operational cloud product, MOD06.

Because the G5NR simulation contains limited trace gas information, the calculated TOA radiance
includes aerosol, cloud, and Rayleigh scattering terms only, and is effectively trace gas and water
vapor corrected. Future implementations of the forward radiative transfer calculations for the
geostationary constellation will be based on a global full chemistry nature run and will include
trace gas absorption effects.

TOA radiance was calculated by running VLIDORT in vector mode with 6 discrete ordinate
streams and delta-M scaling for sharply peaked phase functions. The full vector solution to the
radiative transfer equation is required for accurate TOA radiance calculations in the UV spectral
range [45]. VLIDORT was also configured to use an exact single scatter correction, the so-called
Nakajima-Tanaka procedure, which replaces the truncated single scatter contribution with an exact
solution that uses the complete phase function [46]. An additional correction was applied to the single
scatter term to account for the Earth’s curvature effect on the incoming solar beam and the outgoing
line-of-sight (referred to as the “outgoing” sphericity correction in VLIDORT). See Appendix A for a
comparison of VLIDORT forward radiative transfer benchmark calculations with several RTMs, and
an estimate of the uncertainty in the simulated TOA radiance.

Forward radiative transfer calculations were done for 5 channels in the UV-Vis, which span the
TEMPO, GEMS, and SENTINEL-5 spectral domains and are currently used for aerosol retrievals: 354,
388, 470, and 550 nm. Additional calculations at 670 nm and 1.3 µm were completed for TEMPO only.
These data are freely available for download at http://g5nr.nccs.nasa.gov/data/OBS. The radiative
transfer calculations described in this paper are applicable throughout the UV-Vis, and additional
datasets can be generated by request to the authors.

2.5. Rayleigh Optical Properties

Rayleigh optical thickness vertical profiles were calculated by following the recommendations of
Bodhaine et al. [47]. Rayleigh optical thickness for layer l of thickness ∆z is given by the product of the
layer molecular number density, Nl , the layer Rayleigh scattering cross section, σRay,l , and ∆z:

τRay,l = NlσRay,l(λ)∆z (8)

The layer molecular number density, Nl , was derived from the G5NR layer temperature and
pressure using:

Nl = Ns
pl
ps

Ts

Tl
(9)

where Ns = 2.546899× 1019 cm−3, Ts = 288.15◦ K, and Ps = 1013.25 hPa are the molecular number
density, temperature, and pressure for standard air conditions. The Rayleigh scattering cross section
for incident unpolarized light is given by:

http://g5nr.nccs.nasa.gov/data/OBS
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σRay,l(λ) =
24π3(n2(λ)− 1)2

λ4N2
s (n2(λ) + 2)2 Fl(air, λ) (10)

Here Fl(λ) is the King Factor for the depolarization of air that takes into account the effects of
anisotropy of air molecules. It depends on the molecular composition of air, and can be calculated
from a weighted average of the depolarization terms for the major constituents of air:

F(air, λ) =
78.084F(N2) + 20.946F(O2) + 0.934F(Ar) + CCO2

78.084 + 20.946 + 0.934 + CCO2

(11)

F(N2) = 1.034 + 3.17 · 10−4λ−2 (12)

F(O2) = 1.096 + 1.385 · 10−3λ−2 + 1.448 · 10−4λ−4 (13)

F(Ar) = 1.00 (14)

F(CO2) = 1.15 (15)

For our forward model simulations we assumed 300 ppm CO2 (CCO2 = 0.030). Note Equation (11)
does not include water vapor. Tomasi et al. [48] and Bodhaine et al. [47] indicate that ignoring water
vapor effects can result in Rayleigh optical thickness errors on the order of 0.01% to 0.2%, comparable
to the errors associated with assuming a constant CO2 concentration.

The calculation of Rayleigh scattering cross section (Equation (10)) also requires the refractive
index of air, n(λ), which we estimated with the following:

(n− 1) · 108 = 8060.77 +
2481070

132.274− λ−2 +
17456.3

39.32957− λ−2 (16)

The Rayleigh scattering expansion coefficients (BRay,l) were taken from Table 1 in Spurr [43], and
depend on the depolarization ratio of air, which was simply set to 0.03.

2.6. Aerosol Optical Properties

In GOCART, aerosols are assumed to be external mixtures, thus the total layer aerosol optical
thickness, τaer,l , can be calculated from the sum of individual aerosol species (dust, sea salt, sulfate,
and carbonaceous aerosol) optical thicknesses:

τaer,l = ∑s βs,lmd
s,l (17)

where md
s,l is the aerosol dry mass concentration, and βs,l is the mass extinction efficiency for species s,

which is calculated according to Equation (18) [19]. The aerosol mass extinction efficiency is a function
of the aerosol effective radius (re), density (Ds), wet mass (ms), and extinction coefficient (εs), which,
for hygroscopic aerosols, are all functions of layer relative humidity (RH).

βs =
3εs(λ)ms

4Dsre,smd
s

(18)

In Equations (18)–(20) below, we have dropped the layer subscript, l, for clarity, but all aerosol
physical properties are model layer properties. The parameters in Equation (18) were derived from the
prescribed particle size distribution, density, and refractive index of each species.
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The size distributions for sulfate, OC, and BC were described by a lognormal distribution function:

n(r) =
N0

r ln S
√

2π
exp− (ln r− ln rM)2

2(ln S)2 (19)

where r is the particle radius, n(r) is the number concentration of particles with radius r, N0 is the
total number of particles per unit volume, S is the geometric standard deviation, and rM is the radius
of the number mode of the distribution. The distributions were truncated between a minimum and
maximum radius of rMin and rMax, respectively. The values of S, rM, rMin, and rMax for sulfate, OC
and BC are listed in Table 4.

The sea salt and dust size distribution were described by five size bins. Each bin has a minimum
and maximum radius, which are listed in Tables 5 and 6 for dry sea salt and dust, respectively. The
particle size distribution in each sea salt bin is described by Equation (2) in Gong [49]. While for
dust, for the four largest bins, the particle size distribution within the bin is n(r) = Ni

0r4, where Ni
0

is the total number of particles per unit volume in bin i. The smallest dust size bin is broken into 4
sub-bins with mass weighting factors equal to 0.009, 0.081, 0.234, and 0.676. Within each sub-bin the
size distribution is also n(r) = Ni

0r4.

Table 4. Lognormal size distribution parameters for dry OC, BC, and sulfate.

rM [µm] rMin [µm] rMax [µm] S

Sulfate 0.0695 0.005 0.3 2.03
Organic Carbon 0.0212 0.005 0.3 2.00
Black Carbon 0.0118 0.005 0.3 2.00

Table 5. Minimum and maximum radius of the five size bins that describe the dry sea salt
size distribution.

Bin rMin [µm] rMax [µm]

1 0.03 0.1
2 0.1 0.5
3 0.5 1.5
4 1.5 5.0
5 5.0 10.0

Table 6. Minimum and maximum radius of the five size bins that describe the dust size distribution.

Bin rMin [µm] rMax [µm]

1 0.1 1.0
2 1.0 1.8
3 1.8 3.0
4 3.0 6.0
5 6.0 10.0

Except for dust and hydrophobic OC and BC, all aerosols are hygroscopic. The size distributions
of sulfate, hydrophilic OC, and hydrophilic BC grow with RH according to a growth factor, GF(RH),
that was taken from the Global Aerosol Data Set (GADS) [50] and depends on RH. For some RH equal
to rh, the lognormal size distribution mode and maximum radius increases by the factor GF(rh). For
sea salt, particle growth as function of RH was taken from Gong et al. [51] (see Equation (3) and
Table 2). The size of each sea salt bin changes as the particles grow.

The effective radius, re, for each species at a GEOS-5 downscaled sub-grid layer RH is the
area-weighted mean radius of the size distribution. For dust and sea salt, the effective radius is
calculated for each size bin. The aerosol particle density is then simply the sum of the dry aerosol
density (Dd

s ) and water density (Dw) weighted by the volume fraction of dry aerosol ( f d) and water
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(1− f d), respectively (Equation (20)). The dry particle densities for all GOCART species are listed in
Table 7.

Ds = f dDd
s + (1− f d)Dw = GF3Dd

s + (1− GF3)Dw (20)

Table 7. Dry particle densities for the GOCART species.

Species Dry Particle Density [kg m−3]

Organic Carbon 1800
Black Carbon 1000
Sulfate 1700
Sea Salt Bins 1-5 2200
Dust Bin 1 2500
Dust Bins 2-5 2650

Aerosol scattering and extinction coefficients, as well as scattering-matrix expansion coefficients
for hydrated sea salt, sulfate, and carbonaceous aerosols were calculated with a Mie-scattering code [52]
using an effective refractive index from the volume fraction weighted sum of the water refractive index
and dry aerosol refractive index from the OPAC database [53]. Dust optical properties were derived by
integrating the Meng et al. [54] database, which includes nonspherical effects (see Colarco et al. [55]
for details). The spectral dependence of the dust complex refractive index was described by merging
together three datasets: (1) Shettle and Fenn [56] for wavelengths greater than 1.02 µm, (2) AERONET
observations for 0.44 µm to 1.02 µm [57], and (3) OMI aerosol index observations at 354 nm and
388 nm [31]. A fit by a log-power law curve was used to merge the complex refractive index values
together [55].

The layer aerosol single scattering albedo and scattering matrix is calculated with an optical
thickness weighted sum of the species single scattering albedos, ωs,l , and scattering matrices, Bs,l :

ωaer,l =
∑s ωs,l βs,lmd

s,l

τaer,l
(21)

Baer,l =
∑s Bs,lωs,l βs,lmd

s,l

τaer,l
(22)

3. Results

3.1. TEMPO, GEMS, and SENTINEL-4 Synthetic Observations

This section presents typical synthetic observations for the TEMPO, GEMS, and SENTINEL-4
geostationary constellation. Solar and sensor zenith angles were limited to less than 80◦. This simulates
the expected retrieval opportunities for each region. Figure 9 shows how the spatial coverage of the
geostationary constellation evolves over 15 h. Depending on the time of day, two or more of the
instruments are observing simultaneously, which will help constrain intercontinental transport of
longer lived tracers. Figure 10 shows a simulated true color image for one full TEMPO scan for 15 June
2006 at 21 UTC in the G5NR simulation. The bottom image shows the reflectance from the surface
alone, while the top image includes atmospheric scattering from molecules, aerosols, and clouds as
well. The figure illustrates the fidelity of the simulated observations with respect to realistic Earth
observations in the visible spectral range.
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Figure 9. Simulated 550 nm TOA reflectance as would be observed by the geostationary constellation
over 15 h on 28 July 2006.

Figure 11b shows a simulated true color image of a portion of the TEMPO domain covering the
Northwest United States for the 20 UTC model time step on 27 July 2006. This image was created by
combining the 470, 550, and 670 nm simulated TOA reflectance. Figure 11c,d also show the simulated
388 nm TOA reflectance, as well as the simulated ratio of 354 to 388 nm TOA reflectance. The TEMPO
synthetic observations indicate several hot spots of enhanced 388 nm TOA reflectance corresponding
to high aerosol concentrations from fires, which are apparent in the simulated true color image. These
hotspots also correspond to lower values of 354:388 nm TOA reflectance ratio, indicating the presence
of absorbing aerosol.

Simulated TEMPO True Color Image (Atmosphere + Surface) 2006-06-15 21:00 UTC

Simulated TEMPO True Color Image (Surface Only) 2006-06-15 21:00 UTC

Figure 10. Cont.
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Simulated TEMPO True Color Image (Atmosphere + Surface) 2006-06-15 21:00 UTC

Simulated TEMPO True Color Image (Surface Only) 2006-06-15 21:00 UTC

Figure 10. Simulated true color image for 15 June 2006 21 UTC in the G5NR simulation as would be
observed by TEMPO. The images were created by combining the simulated TOA reflectance at 470,
550, and 670 nm. The top image includes surface reflectance as well as atmospheric scattering from
molecules, aerosols, and clouds. The bottom image shows surface reflectance alone.

Simulated TEMPO TOA Reflectance 388nm 2006-07-27 20:00 UTC

0.10

0.20

0.30

c

Simulated TEMPO Ratio of 354 to 388 nm TOA Reflectance 2006-07-27 20:00 UTC

1.10

1.20

1.30

d

b

Simulated TEMPO True Color Image 2006-07-27 20:00 UTC

a

MODIS AQUA Observed 1 km True Color Image 2006-07-27 20:00 UTC

Figure 11. (a) True color image observed by MODIS Aqua on July 7, 2006 at approximately 20 UTC
created by combining the reflectance from channels 1, 3, and 4. (b) Simulated true color image for the
same G5NR simulation day as would be observed by TEMPO, created by combining the simulated
TOA reflectance at 470, 550, and 670 nm. In (a,b) the red squares represent the MODIS observed active
fires (MCD14DL), which are used in G5NR to drive fire emissions calculated with QFED. (c) Simulated
TOA reflectance at 388 nm, and (d) the ratio of simulated 354 nm to 388 nm TOA reflectance.

The locations of the simulated fires correspond with MODIS observed active fires for this day,
as G5NR used the Quick Fire Emissions Database (QFED) [26] to simulate biomass burning. QFED
uses the fire radiative power approach to estimate fire emissions, which relates time-integrated fire
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radiative energy to amount of fuel burned. Figure 11a shows the observed MODIS Aqua true color
image for 27 July 2006 at approximately 20 UTC. Although the simulated and observed true color
images indicate the same locations of fire hot spots and smoke emissions, as G5NR is not constrained
by meteorological observations, the transport of the fire plume differs between the free running model
and observations.

3.2. Application of Synthetic Observations to Study the Synergy between TEMPO and GOES-R

The GOES-R Series is a four-satellite program including GOES-R, GOES-S, GOES-T and GOES-U
that will extend the operational GOES satellite system through 2036, and provide advanced imagery
and atmospheric measurements of the Earth. The GOES-R Series will maintain the two-satellite
operational system implemented by the current GOES satellites. The satellites will be located at
75.2◦ W and 137◦ W, providing excellent overlap with the TEMPO field of view. In addition, TEMPO
and the GOES-R Series will complement each other in terms of spectral coverage. GOES-R measures
6 bands in the visible to near infrared (NIR) spectral range from 0.47 to 2.25 µm, while TEMPO
will provide spectral observations in the UV-Vis from 290 to 740 nm. Thus, there is an interest in
studying how observations from the two platforms can be used synergistically. One application for the
synergy of TEMPO and GOES-R observations is aerosol type detection. The combination of UV-Vis
observations from TEMPO and NIR observations from GOES-R has the potential to provide aerosol
type discrimination that may not be possible from observations from each sensor alone. In this section,
we will describe how simulated observation data for a biomass burning and a dust event were used
in a case study designed to demonstrate how future observations from TEMPO could be used in
conjunction with simultaneous observations from GOES-R for aerosol type detection. Specifically, the
focus for the two case studies was on (1) detecting smoke from the Pacific Northwest fires on 27 July
2006 in the G5NR simulation, and (2) detecting wind-blown dust coming from the Sonoran Desert on
13 May 2007 in the G5NR simulation.

3.2.1. Overview of the VIIRS Aerosol Detection Algorithm

The aerosol detection algorithm used in the case study was initially developed for the
Visible Infrared Imaging Radiometer Suite (VIIRS), a key instrument on-board the Suomi National
Polar-Orbiting Partnership (SNPP) spacecraft [58]. In the algorithm, the presence of absorbing aerosol
is detected by a decrease in the spectral contrast between light reflected at two neighboring deep-blue
wavelengths observed by VIIRS (412 nm and 440 nm) relative to a Rayleigh scattering only atmosphere.
This spectral contrast is quantified by the Absorbing Aerosol Index (AAI), defined as:

AAI = −100[log10
R412

R440
− log10

R
′
412

R′440
] (23)

where R412 and R440 are the observed TOA reflectance at 412 and 440 nm, respectively, and R
′
412 and

R
′
440 are the TOA reflectance for a Rayleigh scattering atmosphere at 412 and 440 nm calculated with

the 6S RTM [59] for the given location and satellite viewing geometry. Observations with large values
of AAI indicate the presence of enhanced aerosol absorption.

Because of the large particle size, dust scatters radiation in the shortwave IR. This can be used to
distinguish dust from other types of absorbing aerosol (i.e., smoke), which have small particle size and
are mostly transparent in this spectral range. The dust smoke discrimination index (DSDI), defined
in Equation (24), was developed to aid in separating the dust from smoke, and describes the spectral
contrast between TOA reflectance at 412 nm (R412) and 2250 nm (R2250). Observations with large
values of both AAI and DSDI indicate enhanced absorption and scattering by dust.

DSDI = −10[log10
R412

R2250
] (24)
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Optimal thresholds for AAI and DSDI that discriminate between cases of enhanced AOD of
dust and smoke from clean atmosphere were determined by analyzing MODIS Aqua observations
from 2002-2012 in which smoke and dust events could be identified (i.e., supervised training) [58].
Using these thresholds, the VIIRS aerosol detection algorithm flags pixels as smoke, dust, or
clear/undetermined. The algorithm was validated with (1) the CALIOP Vertical Feature Mask
product [60], which identifies aerosol types (including smoke and dust), and (2) AERONET inversion
data, which provides Angstrom Exponent observations, from which aerosols with small particle size
(smoke) and aerosols with large particle size (dust) aerosols can be identified [61,62]. The validation
indicated that smoke and dust with AOD > 0.2 can be detected by the algorithm to within an accuracy
of 80 and 70%, respectively [58].

The GOES-R Series instruments do not have observations in the deep-blue, as the shortest
channel is 470 nm, precluding absorbing aerosol detection using the AAI. However, TEMPO will have
measurements in the UV-Vis, though it will lack the short-wave IR observation needed to discriminate
dust from smoke. Thus, a joint TEMPO/GOES-R aerosol type detection algorithm will be needed.
The simulated observations derived from the G5NR simulation provide a unique dataset to study
and demonstrate this potential synergy between GOES-R and TEMPO observations. For this end, we
applied the VIIRS aerosol detection algorithm to the 412 nm and 440 nm simulated observations from
TEMPO, and the 2250 nm observation from GOES-R. No modifications were made to the algorithm,
which assumes that surface reflectance is Lambertian. In the next section we will show that this can
lead to lower algorithm accuracy for the viewing geometries of TEMPO and GOES-R.

3.2.2. Case Study 1: Smoke Detection

The aerosol detection algorithm code was run using the 27 July 2006 simulated TOA reflectance
data as inputs. The 412 nm and 440 nm simulated observations were derived for the TEMPO domain
and viewing geometry, while the 2250 nm simulated observations were derived for the GOES-R domain
and viewing geometry, assuming 137◦ W as the sub-satellite longitude. The GOES-R observations
falling within each TEMPO pixel were averaged, such that the TOA reflectance at all three channels
were on the same grid.

Figure 12 shows aerosol detection results for the simulated data on 27 July 2006 at 20 UTC,
corresponding to afternoon for the western US. The shading in Figure 12a indicates the simulated
AOD at 550 nm, and the purple curves outline the areas that were detected as smoke. Please note
that only pixels with 550 nm AOD greater than 0.2 are shaded in the figures because this is the
established detection limit for the aerosol detection algorithm [58]. The shading in Figure 12b indicates
the contribution of smoke AOD (defined as the sum of BC and OC AOD) to the total model AOD.
The figures show that the VIIRS aerosol detection algorithm identifies most areas of simulated dense
smoke. This indicates that (1) the optical properties of the smoke aerosols in the G5NR simulation
are consistent with the MODIS observations from which AAI thresholds were derived for the aerosol
detection algorithm, and (2) combining TEMPO and GOES-R observations to characterize smoke
aerosol is a viable strategy. However, Figure 13a shows that some missed detections of dense smoke,
such as in northeast Nevada, occur even in areas with AAI greater than 5, the AAI threshold for
identifying smoke. This is because the DSDI is above the threshold to distinguish dust from smoke
(DSDI must be less than −3) (Figure 14a). Figure 14b shows that if the DSDI were calculated with
hypothetical 2250 nm observations from the TEMPO viewpoint, i.e., the same viewing geometry as
412 nm reflectance, consistent with how the algorithm was developed, the DSDI would be below the
threshold to identify smoke in most of the missed detection areas. The lower 2250 nm reflectance at
the TEMPO geometry is strongly driven by reduced bidirectional surface reflectance in the simulations
when going from the GOES-R to TEMPO viewing geometries (Figure 15). This effect is more significant
where there is elevated surface reflectance (Figure 13b), as less of the TOA reflectance comes from
aerosol scattering. For greater accuracy, re-training the algorithm thresholds, especially angular
dependent thresholds, for the combined GOES-R and TEMPO viewing geometries is recommended.
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Figure 12. (a) Simulated 550 nm AOD, (b) fraction of simulated 550 nm AOD coming from smoke for
27 July 2006 at 21 UTC in the G5NR simulation. The purple contours represent the areas that were
detected as smoke by the VIIRS aerosol detection algorithm.
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Figure 13. (a) Simulated Aerosol Absorbing Index (AAI), (b) TEMPO 412 nm surface reflectance used
for AAI and DSDI calculations for 27 July 2006 at 21 UTC in the G5NR simulation. The purple contours
represent the areas that were detected as smoke by the VIIRS aerosol detection algorithm.
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Figure 14. (a) Simulated Dust-Smoke Discrimination Index (DSDI) using combined TEMPO 412 nm
reflectance and GOES-R 2250 nm reflectance, (b) DSDI using only TEMPO 412 nm and 2250 nm
reflectance for 27 July 2006 at 21 UTC in the G5NR simulation. The purple contours represent the areas
that were detected as smoke by the VIIRS aerosol detection algorithm.
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Figure 15. (a) Simulated GOES-R 2250 nm surface reflectance re-gridded to the TEMPO resolution, and
(b) TEMPO 2250 nm surface reflectance for 27 July 2006 at 21 UTC in the G5NR simulation. The purple
contours represent the areas that were detected as smoke by the VIIRS aerosol detection algorithm.
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Some missed smoke detections, such as the thin to moderately dense parts of the Washington
state smoke plume that was transported away from the fire and mixed with other aerosol, occurred
even over dark surfaces because the AAI was too low. As we know the true aerosol composition in
each pixel, we can examine how the algorithm performs as a function of the contribution of smoke to
the total AOD. The diurnal variation of the accuracy of the algorithm is shown in Figure 16. Accuracy
is defined as:

Accuracy =
Tpositive + Tnegative

Tpositive + Tnegative + Fpositive + Fnegative
(25)

where Tpositive (true positive) is the number of pixels where the algorithm correctly detects smoke,
Tnegative (true negative) is the number of pixels where the algorithm correctly detects there is no smoke,
Fpositive (false positive) is the number of pixels where the algorithm falsely detects smoke, and Fnegative
is the number of pixels where smoke is present but the algorithm fails to detect it.

Figure 16 indicates that the algorithm has the highest accuracy when only pixels with pure smoke
(>95% of total AOD coming from smoke) are considered as “true smoke”. For this case, the accuracy of
the retrieval is greater than 80%, in agreement with the results from the validation of the algorithm
using real observations [58]. The diurnal variability in the accuracy of the algorithm is due to the fact
that fire activity increases in the afternoon, which increases the number of missed detections.
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Figure 16. Accuracy of smoke detection on 27 July 2006 (solid lines). The different colored lines
represent the accuracy when a “true smoke” pixel is defined by different thresholds of the contribution
of smoke to the total AOD. The highest accuracy occurs when only pixels with pure smoke (>95% of
total AOD coming from smoke) are considered as “true smoke”.
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3.2.3. Case 2: Dust Detection

On 13 May 2007 in the G5NR simulation, wind-blown dust coming from the Sonoran Desert led
to elevated AOD in the area southwest of Phoenix, along the US-Mexico border. As before, the aerosol
detection algorithm code was run using the simulated TEMPO and GOES-R TOA reflectance data for
this day as inputs. The contour lines in Figure 17 outline the areas that are detected as containing dust
at the 20 UTC simulation time step, the model hour with the highest dust AOD. The figure shows
that the algorithm tends to underestimate the extent of the dust plume. Overlaying the dust detection
contours over the surface reflectance RTM inputs (Figure 18) shows that the combination of low surface
reflectance spectral contrast and high surface reflectance leads to elevated AAI that is interpreted by
the algorithm as absorbing aerosol. This is a known uncertainty in the retrieval methodology, and is
most relevant over bright surfaces and low dust optical thickness, where light reflected by the surface
contributes significantly to TOA reflectance. This case study indicates that the detection threshold of
dust over land is probably higher than the value of 0.2 that has been assumed before, as the accuracy
for this case study was less than 50% for this day. The suggestion in Ciren and Kondragunta [58] of
deriving AAI thresholds for different land surface types has merit and could improve the retrieval.
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Figure 17. Cont.
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Figure 17. (a) Simulated 550 nm AOD, (b) fraction of simulated 550 nm AOD coming from dust for 13
May 2007 at 20 UTC. The purple contours represent the areas that were detected as smoke by the VIIRS
aerosol detection algorithm.
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Figure 18. (a) Ratio of simulated 412 nm to 440 nm surface reflectance, and (b) simulated 440 nm
surface reflectance for 13 May 2007 at 20 UTC. The black and purple contours represent the areas that
were detected as smoke by the VIIRS aerosol detection algorithm.

4. Concluding Remarks and Outlook

In this paper we described a detailed and accurate (less than 1.0% uncertainty) model for
calculating TOA radiance from the GEOS-5 nature run for a constellation of geostationary sensors
for observing air quality. The current generation of aerosol retrieval algorithms are optimized for
specific conditions such as afternoon well-mixed atmospheres, and limited viewing and illumination
angles. The G5NR and the simulated observations described in this document provide an opportunity
to test these algorithms globally over a realistic dynamic range. A combined TEMPO and GOES-R
retrieval algorithm for aerosol type detection based on empirical thresholds of aerosol index derived
from MODIS observations was demonstrated and evaluated using the simulated observations. We
found that the combination of UV-Vis observations from TEMPO and near-infrared observations
from GOES-R can be used to accurately detect dense smoke. However, to achieve greater accuracy in
aerosol detection, re-training the algorithm thresholds for the combined GOES-R and TEMPO viewing
geometries is recommended as neglecting the difference in surface bidirectional reflectance between
the different viewing angles can lead to missed detections. To improve dust detection, deriving aerosol
index thresholds for different land surface types is recommended. This analysis coincidentally showed
that the optical properties of the smoke aerosols in the simulated observations are consistent with the
MODIS observations from which the aerosol index thresholds were derived.

There are many more potential applications for the simulated observations described in this
paper, such as establishing new retrievals or instrument requirements during the development of
new mission concepts. For example, the data will be used to prototype retrievals using polarized
multi-angle and multi-channel observations spanning the UV and visible wavelengths, which have the
potential to provide several pieces of information beyond AOD such as aerosol absorption and fine
mode fraction. The synthetic observations will also be used to analyze how the new time resolved
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measurements and the increase in spatial coverage from geostationary orbit effects chemical weather
forecasts and data analysis, particularly with respect to the current suite of LEO observations.

Future development of the instrument simulator capabilities will focus on including molecular
absorption effects from water vapor and trace gases in the radiance calculation. This will be required for
applications that use the hyperspectral feature of the new instruments. This will also require trace gas
vertical profile inputs from a full chemistry nature run [63]. Furthermore, we are currently developing
instrument simulator capabilities for ocean color instruments, such as PACE (Plankton, Aerosol, Cloud,
ocean Ecosystem), that include detailed hyperspectral water leaving radiance calculations. These
developments will provide the opportunity to test strategies for handling complex trace gas, aerosol,
cloud, and surface interactions in retrieval algorithms [11,64,65].
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Appendix A. VLIDORT Benchmarking and TOA Radiance Uncertainty Estimate

Here we present uncertainty estimates of the vector radiative transfer calculations from VLIDORT
by comparing TOA radiances calculated with VLIDORT to that of five other polarized radiative transfer
models. Spurr [46] and Wang et al. [11] reported on benchmarking results against the solutions of
Coulson et al. [66] and Siewert [67] for the Rayleigh and aerosol slab problems, respectively, and found
that VLIDORT was able to reproduce their results to the reported level of accuracy of the benchmark
datasets. In the following, VLIDORT is benchmarked for five additional scenarios, including realistic
atmospheric profiles and spheroidal aerosol particles. Table A2 describes the seven scenarios that were
considered, consisting of four single layer problems, and three 32-layer problems containing various
configurations of Rayleigh scattering, aerosol scattering, and molecular absorption. For this analysis,
VLIDORT was run in the same configuration as described in Section 2.4.2.

Table A1 lists the various RTMs considered in the intercomparison and their solution strategies,
which were either discrete ordinates (similar to VLIDORT), or rigorous Monte Carlo solutions. In
general, all models in Table A1 were run in high accuracy mode (e.g., 128 streams for spheroidal
aerosol cases), and the results provide a good dataset for analyzing the accuracy of the low (6) stream
VLIDORT approximation. Details of each model can be found in Emde et al. [68], and the model
outputs for all scenarios were downloaded from the following website: http://www.meteo.physik.
uni-muenchen.de/~iprt/doku.php?id=intercomparisons:intercomparisons.

Table A1. Benchmark intercomparison polarized radiative transfer models.

Name Solution Method Reference

MYSTIC Monte Carlo Mayer [69] Emde et al. [70]
PSTAR Discrete Ordinate Ota et al. [71]
SPARTA Monte Carlo Barlakas et al. [72]
SHDOM Discrete Ordinate Evans [73]
IPOL Discrete Ordinate ftp://climate1.gsfc.nasa.gov/skorkin/IPOL

http://www.meteo.physik.uni-muenchen.de/~iprt/doku.php?id=intercomparisons:intercomparisons
http://www.meteo.physik.uni-muenchen.de/~iprt/doku.php?id=intercomparisons:intercomparisons
ftp://climate1.gsfc.nasa.gov/skorkin/IPOL
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Table A2. Benchmark intercomparison scenarios. Viewing zenith angles range from 0◦ to 80◦ with an
increment of 5◦. Viewing azimuth angles range from 0◦ to 360◦ with an increment of 5◦.

Scenario Name Description

A1 Rayleigh Slab
Optical Thickness = 0.5
Surface Albedo = 0.0
Case 1: SZA = 0◦, SAA = 65◦, Depolarization Factor = 0.00
Case 2: SZA = 30◦, SAA = 0◦, Depolarization Factor = 0.03
Case 3: SZA = 30◦, SAA = 65◦, Depolarization Factor = 0.10

A2 Rayleigh Slab over a Lambertian Surface
Optical Thickness = 0.1
Surface Albedo = 0.3
Depolarization Factor = 0.03
SZA = 50◦, SAA = 0◦

A3 Aerosol Slab—Spherical Particles
AOD = 0.2
Surface Albedo = 0.0
Phase matrix corresponds to water soluble aerosol at 50% RH from OPAC database
SZA = 30◦, SAA = 0◦

A4 Aerosol Slab—Spheroidal Particles
AOD = 0.2
Surface Albedo = 0.0
Phase matrix corresponds to prolate spheroid with aspect ratio of 3.0
SZA = 40◦, SAA = 0◦

B1 Rayleigh Scattering Vertical Profile—Standard Atmosphere
Rayleigh optical thickness profile typical of 450 nm
Surface Albedo = 0.0
Depolarization Factor = 0.03
SZA = 60◦, SAA = 0◦

B2 Rayleigh Scattering and Molecular Absorption Vertical Profile—Standard Atmosphere
Rayleigh optical thickness and molecular absorption profile typical of 325 nm
Surface Albedo = 0.0
Depolarization Factor = 0.03
SZA = 60◦, SAA = 0◦

B3 Aerosol Vertical Profile - Standard Atmosphere
Rayleigh optical thickness and molecular absorption profile typical of 350 nm
Profile of spheroidal aerosols (same as scenario A4)
Surface Albedo = 0.0
Depolarization Factor = 0.03
SZA = 30◦, SAA = 0◦

Figure A1 shows the difference between VLIDORT and the Monte Carlo model, MYSTIC, which
is generally the median the of the five benchmark models, for the aerosol vertical profile scenario (B3).
The VLIDORT solutions fall within the 2-sigma uncertainty reported by the Monte Carlo RTM for
nearly all scattering geometries. Table A3 shows the root mean square error between VLIDORT and
the six benchmark RTMs for all seven radiative transfer scenarios considered. For all the benchmark
scenarios the VLIDORT 6 stream approximation generally agrees to within at least 0.1% of most models.
The largest mean error between the benchmark models and VLIDORT is 0.68%, which is comparable
to the measurement errors in the UV-Vis for sensors such as OMI [74].
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Table A3. Root mean square error (RMSE) and relative RMSE (shown in parenthesis) between VLIDORT
and the intercomparison RTMs for reflected total intensity. The values in the row labeled Average
represent the RMSE between VLIDORT and the average of all the models.

Scenarios Models
MYSTIC IPOL SPARTA PSTAR SHDOM3 Average

A1 Case 1 5.2e−5 (0.02%) 2.5e−5 (0.01%) 1.2e−4 (0.05%) 2.5e−5 (0.01%) 9.8e−5 (0.04%) 2.5e−5 (0.01%)
A1 Case 2 4.9e−5 (0.02%) 2.7e−5 (0.01%) 3.2e−4 (0.12%) 2.7e−5 (0.01%) 9.5e−5 (0.04%) 6.5e−5 (0.02%)
A1 Case 3 4.9e−5 (0.02%) 2.6e−5 (0.01%) 4.2e−4 (0.16%) 2.6e−5 (0.01%) 9.9e−5 (0.04%) 8.4e−5 (0.03%)

A2 2.5e−5 (0.01%) 1.9e−5 (0.01%) 2.9e−5 (0.01%) 1.9e−5 (0.01%) 1.8e−4 (0.06%) 5.2e−5 (0.02%)
A3 7.6e−5 (0.11%) 6.7e−5 (0.09%) 7.6e−5 (0.11%) 6.5e−5 (0.09%) 1.3e−4 (0.18%) 7.0e−5 (0.10%)
A4 1.2e−4 (0.67%) 1.2e−4 (0.68%) 1.2e−4 (0.68%) 1.2e−4 (0.68%) 1.2e−4 (0.68%) 1.2e−4 (0.68%)
B1 6.9e−5 (0.05%) 6.5e−5 (0.05%) 5.0e−5 (0.04%) 6.5e−5 (0.05%) 1.3e−4 (0.10%) 7.4e−5 (0.06%)
B2 2.0e−5 (0.01%) 7.7e−7 (0.004%) 1.5e−5 (0.01%) 7.7e−7 (0.004%) 9.9e−5 (0.05%) 2.2e−5 (0.01%)
B3 4.3e−5 (0.01%) 1.7e−5 (0.01%) 7.4e−5 (0.02%) 1.7e−5 (0.01%) 1.8e−4 (0.06%) 5.2e−5 (0.02%)

Figure A1. Difference in total intensity between VLIDORT and MYSITC for the aerosol profile scenario
(B3). The gray lines represent the 2-sigma uncertainty reported by MYSTIC, a Monte Carlo RTM.
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